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Abstract. The problem is revisited of continuous-spectrum small-amplitude bounded standing waves over a plane
beach of arbitrary incline. Three documented approaches are compared and discussed vis-à-vis computational diffi-
culties and this reveals, in particular, that the computation in established models, for particular beach angles, is
optimised by seeking solutions to a functional integro-difference equation in a L2 space. This simplification is
found to be impossible for general beach angles and developed instead is an alternative method initially based
on Cauchy Principal value convergence of the inversion integral but improved (by linear combination of solu-
tions) and developed into a comprehensive computational package which is validated by three fundamental tests.
A single f77 routine is provided for the user through a web-link. Comparisons with established but hitherto un-
computed methods are found numerically to favour the present development. Examples presented include both
very steep and very shallow beaches and both potentials and velocities are calculated and displayed throughout
the water column.

Key words: Bromwich contour, functional difference equation, Gamma function, Maliuzhinets’ function, residue
computation, W-transformation.

1. Introduction

Obliquely incident monochromatic waves of circular frequency ω on a plane incline of slope
tanα represents one of the classic eigenvalue problems in basic linearized water-wave the-
ory. Ursell [1] has labelled as a ‘mixed spectrum’ the situation that prevails for this prob-
lem in so far as the eigenvalue problem for the wavenumber k has a discrete spectrum given
by ω2 =gk sin(2n+ 1)α;n∈ N if k >ω2/g (Ursell’s edge waves) and a continuous spectrum if
k<ω2/g. Most readers will have encountered the latter (which are the subject of this paper),
at some time or other, in, for instance, the description by Peters [2] also fully discussed in
Stoker’s book [3, pp. 95–109] with only slight modifications. However, there have been other
descriptions for this problem, on arbitrary slope, in particular by Roseau in a series of papers,
e.g. [4], and somewhat later by Lauwerier [5]. The present author in [6] revisited the problem
to construct and compute solutions in terms of inverse Kontorovich-Lebedev transforms but
was only able to do so for the most simple cases of beach angles of the type α=π/2M,M ∈
Z (hereafter referred to as ‘very simple’ angles with the understanding that ‘simple’ angles
are of the somewhat more general type α=pπ/2M,(p,2M)= 1). The published material on
other than very simple beaches appear to have remained purely theoretical to this date; the
present author is certainly unaware of any published attempts at computations. Indeed, in
recent unpublished work, Bruce [7] shows some of the considerable difficulties involved in
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computing, for example, the solution of Peters [2] even for very simple beaches. In [7] Bruce
also computed the solutions for a number of special cases (and these included computation
of the singular standing wave). However, even the case M=2 is shown to present a real chal-
lenge using Peters’s model, although it was shown by Roseau [4], almost at the same time,
that the bounded wave could be expressed in closed form in terms of simple exponentials.
It will be assumed that readers are reasonably familiar with these earlier works and some of
their limitations.

Whilst the solutions on very simple beaches are readily computed and arguably infer the
‘flavour’ of solutions on non-simple beaches, the main interest in the computations is more
often than not in a secondary exploitation of the solution, perhaps in a second-order model
looking at steady currents, higher harmonics or set-down or undertow calculations (see e.g.
[8]). In situations such as these, where large cancellations may occur, it is essential to be able
to compute with significant accuracy, the first-order model and to be able to do so regardless
of the angle of the beach or the angle of wave attack.

The main objective in this work, therefore, is to construct and to compute a solution for
all beach angles which, above all, automatically reduces to the closed-form expressions, now
well known, for the cases when the beach angles are very simple. Many authors have used
the 2-d normal-incidence solutions for their related investigations but they generally appear
to avoid the 3-d oblique-incidence versions and it is presumed that the lack of a readily
obtainable numerical evaluation could be a major reason for this. For example Minzoni and
Whitham [9] used the 2-d solution in discussing generation of edge waves whilst more recently
Blondeaux and Vittori [10] also used it in an investigation of nonlinear resonant modes on
a beach. Thus, the view will be taken here that what is required as the ultimate goal is a
basic routine from which the solution is easily obtained by non-specialist mathematicians and
as such a specific target is to develop a model which can be computed by a single f77 pro-
gram linked to appropriate (public domain) QUADPACK library routines; this forms an inte-
gral part of the present paper. It is believed that this could be of special interest to modellers
working also with beach protection schemes where typically inclines are greater than 45◦, this
being the steepest beach that enjoys the closed-form expressions well-known in the literature.
With coastal protection schemes in mind, the beach of 60◦ inclination is used as one of the
test examples near the end of this work.

The layout of the paper is as follows. The defining equations are written in Section 2 and
this is followed by a section discussing some well-known solutions with 3 chosen such being
compared in respect of their associated integral transforms and difference equations (DE).
Methods of solving these are discussed in Section 4 for various beach angles and this is fol-
lowed by a section describing the full solution to the beach water-wave problem using a new
approach. A new element is found to be the possibility of solving the DE either in a L2

space or outside it. The former approach leads more directly to the finite expansions of poten-
tial (or wave height) in cases when these are available, whilst the latter approach has to be
adopted for non-simple beach angles. Computations are discussed in Sections 6 through 8 and
a number of appendices provided hopefully make the reading of the paper less interrupted
by detail. For the reader with little interest in mathematical detail of solutions, the possibil-
ity exists of passing over Sections 3–5 together with the appendices and concentrating instead
on computing the solution as discussed fully in Sections 6–8 and the web-linked f77-file at
www/lgu.ac.uk/cismres/xtra/prog3.f. Section 9 contains a concluding discussion with emphasis
on the reliability of the method and the possibility of future work to discuss the robust com-
putation of the singular wave which would be required in a progressing wave description (see
e.g. discussion in [3, pp. 72–75]).
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2. Equations

The potential function � is expressed in the form � = Re(φeiωt ) where ω is the circular
frequency of the monochromatic waves. The fundamental field equation for φ, assuming a
long-shore dependence of the form eiκZ will then be

�φ−κ2φ=0 (1)

with the boundary conditions normally adopted for this problem (see e.g. [3, p. 96])

∂φ

∂θ
(R,−α)=0; 1

R

∂φ

∂θ
(R,0)=φ(R,0), (2)

where z=Reiθ in the usual cylindrical polar coordinates (Z is used for the long-shore coordi-
nate). In the above, time can be made non-dimensional by the transformation t= t ′/ω. There
being no physical length scale in the infinite wedge, lengths are made non-dimensional w.r.t.
the wave-length assumed at infinity, namely g/ω2. In the rest of this work, it is assumed that
all lengths and time have been scaled in this way. Closure of the system requires statements
to be made about the far-field asymptotics and the behaviour at the origin. It is well-known
that a solution bounded at the origin and having O(1) wave behaviour at infinity will be per-
fectly reflected. Specifically, following Stoker [3, p. 96] the field at infinity is proportional to
eimx+yei(κZ+ωt) so that m2 +κ2 =1. Thus κ >1 provides the discrete-spectrum solution repre-
senting trapped edge waves first written by Ursell [1] (and later by Roseau [11]) whilst κ < 1
provides the continuous-spectrum solutions that form the subject of this study whose wave
fronts will therefore be directed by the wave number k = (m, κ). The case κ= 1 gives the so-
called cut-off modes at the critical beach angles (π/6, π/10, π/14, . . . ) which can be thought
of as limiting waves of ‘glancing’ incidence angle approaching zero (see [12]).

3. Established methods of solution

The solution constructed by Peters [2], albeit mathematically elegant, is extremely hard to
compute, even for the very simple beach angles. This has been thoroughly demonstrated
by Bruce in unpublished work [7]. The solution of Lauwerier [5] (see Appendix A) also
presents numerical difficulties and (understandably in view of the computational facilities at
the time) neither of these authors were able to compute their solutions numerically. Interest-
ingly, though, Lauwerier pointed out that he had been unable to reconcile his solution ana-
lytically with that of Peters, although there were similar characteristics in the two.

The pivotal element in any of the solutions mentioned here is the inevitable difference
equation that has to be satisfied by the kernel of whichever integral transform the author
adopts. In the case of Peters [2] this was a Laplace transform (although in his treatment,
Stoker [3, p. 97] opts to go straight to the contour-integral representation that Peters even-
tually arrives at). Lauwerier uses a Fourier integral (essentially a Sommerfeld integral rep-
resentation). Both these authors obtain a first-order difference equation, whilst in [6] the
present author obtains a second-order equation using the inverse Kontorovich-Lebedev trans-
form (KLT). It is of interest to note, through the expression

2Kis(t)=
∫ ∞

−∞
exp(−t cosh θ − isθ)dθ

for the modified Bessel function, that the KLT can be regarded as a Laplace p-transform fol-
lowed by a mapping p = cosh θ and finally a Fourier transform in the θ -plane. The point



116 Ulf Ehrenmark

3-D Beach Wave Problem
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Figure 1. Schematic representation of 3 chosen solutions and their associated difference equations; in each case α is
the beach angle.

about this observation is the illumination that Peters and Lauwerier evidently used differ-
ent complementary KLT component transforms. If Peters used the ‘front-end’ of the KLT as
defined here, then Lauwerier used the ‘rear-end’.

Figure 1 shows schematically the relationships between the three types of solutions dis-
cussed and the types of equations occurring in the various approaches. This might offer some
explanation why the two solutions were found hard to reconcile.

A functional first-order difference equation that is typical of that experienced in the above
can be taken from the study by Williams [13] on electromagnetic diffraction in a wedge. Wil-
liams solves his equation (similar equations will be written in the next section) with the help
of the double gamma function introduced by Barnes [14] and only a year before Williams’s
work, Maliuzhinets [15,16] had defined a function, now known as Maliuzhinets’s function
Mβ(s), as a solution f =Mβ of

f (s+2β)
f (s−2β)

= cot
{

1
2

(
s+ 1

2
π

)}
(3)

which is analytic in −2β − π/2<Re(s) < 2β + π/2 and satisfies f (0)= 1. Solutions to Wil-
liams’s and other such related equations are then readily expressed in terms of Maliuzhi-
nets functions and the advantage of such a representation is that a relatively simple integral
expression is available for Mβ(s), namely

Mβ(s)= exp

{
−1

2

∫ ∞

0

cosh(xs)−1

x cosh( 1
2xπ) sinh(2βx)

dx

}
. (4)

Williams made the observation that Peters’s solution was extremely difficult to compute
because of the analytic continuation formulae required in various sectors. The test of time
has substantiated this view and, with the exception of the recent unpublished work [7], there
appear to have been no attempts made to perform evaluation from the original expressions



Computing the continuous-spectrum linearised bounded standing wave 117

given by Peters. Williams held the view that the infinite-product expansions would be easier
to deal with and so these are written in the present work for the beach problem and used to
develop the numerical strategy.

The major objective of this work, however, is to achieve a model which can be computed
for arbitrary slope and incidence angles but which, nevertheless, reduces directly to the closed
forms available for very simple slope angles. There is no doubt that the latter expressions are
most easily obtained using the KLT approach (see [6]) but, on the other hand, the solution
of the second-order difference equation for non-simple slopes does seem to lead back to the
Lauwerier-type approach where the solution itself is expressed as a Sommerfeld integral. This
approach is taken also by other authors, e.g. [17]. To reflect this, the intention is to proceed
with the KLT formulation and allow the method of construction of a solution to the differ-
ence equation to lead us back to the Sommerfeld expression for the full solution. This helps
explain other questions such as why Peters’s solution, for example, is comparatively hard to
express in simple terms for even the simplest of the very simple beach angles π/4. We note
similarly, that Lauwerier’s solution can be reduced to a finite sum of exponentials for very
simple beaches, but only after a considerable amount of manipulation (the simplest case α=
π/4 is illustrated in Appendix A).

4. Solutions of difference equations

As an alternative to the method of using an integral expression such as the Maliuzhinets
function, one can follow Williams [13] and use Barnes’s double gamma function. In this case,
the need to calculate an inner integral before the final outer integration for the solution can
proceed, will be replaced by the need to evaluate an infinite product of gamma functions. An
account of both methods is given here with appendices used prudently to minimise disruption
to the text, but tests have shown that numerical computation of the infinite product referred
to is fraught with difficulties. Thus, direct inversion of this method is not attempted.

By expressing a solution to system (1) and (2) in the form

φ=
∫ ∞

0
A(s)Kis(κR) cosh s(θ +α) ds, (5)

the difference equation that has to be satisfied by the (even) function A(s) is

A(ip+ i) sin(p+1)α−2µA(ip) cospα−A(ip− i) sin(p−1)α=0, (6)

where µ=1/κ (see [6]). A solution to this is proposed in the form

A(p)= lim
X→∞

1
2π i

∫ c+iX

c−iX
expf (x)dx, (7)

so that, with c suitably chosen, f is effectively a Laplace transform of A. Inserting (7) into
(6) and making some rearrangement and the assumption (to be verified a posteriori) that the
contour can be laterally dragged a distance 2α without interference from poles, we find that

∫ c+i∞

c−i∞
eipξf (ξ −α){eiξ −2iµ− e−iξ }dξ =

∫ c+i∞

c−i∞
eipξf (ξ +α){eiξ +2iµ− e−iξ }dξ. (8)

The procedure normally used by authors is to argue that this is satisfied by the difference
equation

f (ξ +α)
f (ξ −α) = sin ξ −µ

sin ξ +µ (9)
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and Lauwerier obtained essentially this same equation [5, Equation 4.3], as might be expected
from the scheme shown in Figure 1. Incidentally, whilst the focus in the present work is on
the construction of the bounded standing wave, readers may note that the logarithmically
singular standing wave (required for the construction of progressing waves) may be deter-
mined by seeking A(s) in the alternative form A∗(s) cothπs where A∗ is now of odd parity
in s (see [6]).

4.1. A vertical cliff

The simple case α=π/2 is often of interest to see how methods might work in more general
cases. The general solutions to this problem appear to originate from Weinstein [18] but are
also documented by Stoker [3, Section 5.3] and recovered by the author using the KLT in [6].
There it is found that the bounded solution

φ= eR sin θ cos(R
√
(1−κ2) cos θ)

is given by the choice A(s)= cosσs where coshσ =1/κ=µ. The inverse of formula (7) gives
the equivalent

f = x

x2 +σ 2
; Rex >σ,

which is not a solution of the functional Equation (9). Instead, Equation (8) is satisfied by
the observation that each side is an integral of an entire function (simple poles being remov-
able) and the Bromwich contours can be completed to give equality because each side is indi-
vidually zero. The question then arises whether solutions to (9) will produce a solution to the
problem. The form of f (ξ) is unique for the bounded solution in the space of functions f (c+
ix)∈L2(−∞,∞) (see Titchmarsh [19, p. 67 et seq.]), so it is of some interest to compare the
nature of f (ξ) arising as a solution to (9). For the vertical cliff, this is easily demonstrated
to be

f (ξ)=�(ξ)cos 1
2 (ξ + iσ)

sin 1
2 (ξ − iσ)

,

where �(ξ+α)=�(ξ−α) so that the solution integral for A(s), Equation (7), converges only
as Cauchy principal value at infinity when � takes (as anticipated) a constant value.

4.2. Solution for general angles

In previous unpublished work [20], the author, unaware of the work of Maliuzhinets, intro-
duced a function Bk(s) as a solution to the difference equation

B(s+1)=B(s) tan sα. (10)

This solution was subsequently used in a number of works, e.g. [21], to aid the description of
the 2-D beach problem. The expression given in [20] is effectively

Bk(s)=(s) exp

[∫ ∞

0

dt
t

{
2et/2 sinh(s− 1

2 )t

(ekt +1)(et −1)
−
(
s− 1

2

)
e−t
}]

,−k<Res <k+1, (11)

where now and hereafter α = π/2k. It was, however, later noted (by Lawrie in remark
appended to [22]) that a closed form may be obtained when k is integer:

Bk(s)=2k−1√2π cscπs
k−1∏
j=0

cos(s+ j)α, 0<Re(s)<1. (12)
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Note also that Bk satisfies the same ‘folding’ formula as the gamma function, namely

Bk(s)Bk(1− s)= π

sinπs
. (13)

It is clear that Bk(s) as defined by Equation (11) is related to Maliuzhinets’s functions and
after a small amount of manipulation using Kummer’s result [23, p. 250], we can express this
relationship by

Bk(s)=
{

π

sinπs

Mβ(
π
2 + (s− 1

2 )4β)

Mβ(
π
2 − (s− 1

2 )4β)

} 1
2

; β=π/4k, 0<Re(s)<1. (14)

Given that Equation (9) can be rewritten

f (ξ +α)
f (ξ −α) = tan 1

2 (ξ −γ )
tan 1

2 (ξ +γ ) , (15)

where sin γ =µ=coshσ , it is straightforward to express a solution in terms of Bk functions. It
will be convenient to modify the notation of f to indicate its dependance also on the param-
eter γ in which case that solution is written

f (ξ, γ )= Bk(
ξ−γ
2α + 1

2 )

Bk(
ξ+γ
2α + 1

2 )
. (16)

Note, with the help of the formula

Mβ(π/2+ s)Mβ(π/2− s)=M2
β(π/2) cos(πs/4β)

(see [17, Equations B4 and B5]) that

f (π/2, γ )=1.

An alternative way of expressing this solution is obtainable through the use of Barnes’s
double gamma function. The result (see Appendix B for some details) for which f (π/2, γ )=1
is

f (τ,γ )=
∞∏
m=0


{
α−γ−τ+(2m+2)π

2α

}


{
α−γ−τ+(2m+1)π

2α

} 
{
α+γ−τ+(2m+1)π

2α

}


{
α+γ−τ+(2m+2)π

2α

} 
{
α+γ+τ+(2m+1)π

2α

}


{
α−γ+τ+(2m+1)π

2α

} 
{
α−γ+τ+(2m)π

2α

}


{
α+γ+τ+(2m)π

2α

} . (17)

It is evident that this form of solution is more useful in discussing the singularities of the
function f (τ, γ ). In fact, poles and zeros of the function Bk(s) were discussed in [24] but it
can readily be seen (since Reγ =π/2) from Equation (17) that there is a strip of regularity
of f (τ, γ ) given by π/2−α<Re(s)<3π/2+α. This is entirely consistent with the findings in
[24] from which it can be confirmed that Bk(s) has zeros at s=−k,2k+ 1 and no others in
between and that it has simple poles at s=0, k+1 and no others in between. The observation
is important because the derivation of the formal solution required the existence of a strip
of analyticity of width greater than 2α so that the two sides of Equation (8) can be brought
together in the manner achieved using Cauchy’s theorem. This still requires a discussion of the
vanishing of the aggregate of two contributions on Im(ξ)=±X in the limit X→∞. Finally,
it is noted here that if A(s) satisfies Equation (6), then so does A(−s) and so we can replace
Equation (7) by

A(p)= lim
X→∞

1
2π i

∫ c+iX

c−iX
f (x) coshpx dx. (18)
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5. Solution to the water-wave problem

5.1. Very simple beach angles

For the beach of 45◦ inclination (k=2), the author obtained [6]

A(s)=d1 cosh s(π/4+ iσ)+ c.c.

where the constant d1 would be chosen to give the required wave amplitude at infinity. This
form for A can be recovered by replacing the line of integration Re(x)=c by a closed contour
round poles at π/4± iσ . A form of f which does this is readily seen to be

f = d1

x−x1
+ d1

x−x1
,

where x1 =γ −α. This again is the L2 form for f (as in the case of the cliff) but let us take a
step back and examine how, for all very simple beaches, this form might be derived through
the present ansatz, essentially Equation (2). The arguments leading to (9) effectively take us
through a stage where we require

∮
cosh xs{f (x−α)(sin x−µ)−f (x+α)(sin x+µ)}dx=0 (19)

for some closed contour which can be translated a distance 2α parallel to the real axis with-
out traversing singularities. Instead of equating the brace to zero (which leads directly to (9))
we simply look for the integrand to be holomorphic inside the contour. Suppose f has simple
poles at x=xj , j =1,2, . . . ,m and write

f (x)=
m∑
j=1

bj

x−xj +h(x),

where h is holomorphic. Application of (19) then yields

∮
cosh xs

m∑
j=1

{
bj (sin x+µ)
x− (xj −α) − bj (sin x−µ)

x− (xj +α)
}

dx=0.

The points xj are now chosen so that xj +α=xj+1 −α. In this way we can choose also

bj (sin(xj +α)−µ)=bj+1(sin(xj +α)+µ), j =1,2, . . . ,m−1.

Then, Equation (19) is guaranteed, since the first term of the first sum and the last term of
the last sum are regular because of the zeros of the numerator. This then fully generates the
L2 solutions for all very simple beach angles. Explicitly the points xj are

x1 =−π
2

+α, . . . , xj+1 =xj +2α, . . . , xm= π

2
−α

and the corresponding solution for A(s) is as given by the author in [6, Equation (5.2)].
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5.2. The case k= 2

It will be worthwhile to discuss the beach of unit gradient a little further. For integer values
of k there will always be cancellation of the gamma functions in (17) and for the case k=2,
using the abbreviations z± = (τ ±γ )/2α, we have

f (τ, γ )= (3+2z−)(1+2z−)
(3+2z+)(1+2z+)

∞∏
m=0

{
(4m)2 − ( 1

2 + z+)2
}{
(4m)2 − ( 3

2 + z+
)2}

{
(4m)2 − ( 1

2 + z−)2
}{
(4m)2 − ( 3

2 + z−
)2} ,

which we may readily simplify, using the infinite product

sin
(

1
2
πz

)
= πz

2

∞∏
r=1

{
1− z2

4r2

}
,

to

f (τ, γ )=
sin
(
π
8 + 1

2 (τ +γ )
)

sin
(

3π
8 + 1

2 (τ +γ )
)

sin
(
π
8 + 1

2 (τ −γ )
)

sin
(

3π
8 + 1

2 (τ −γ )
) . (20)

This solution can also be recovered using the representation (16) most easily combined with
the convolution result Bk(s)Bk(1− s)=π/ sin(πs).

In order best to express the full solution, we note the result
∫ ∞

0
2coshs

(π
2

−y
)

coshs(θ+α)Kis(κR) ds=πe−κRsinycos(θ+α)cosh{κRcosy sin(θ+α)};

see [25, p. 245]. Combine this with the closed contour integral for A(s) and the ansatz integral
for the solution, Equation (5), change orders of integration and there follows the well-known
result for the beach of unit gradient,

φ=−iπµ2{eY (T cosTX− sinTX)+ e−X(T cosT Y + sinT Y )}

in terms of Cartesian coordinates (X,Y )=R(cos θ, sin θ) where T = tanhσ . Similar expressions
for all very simple beach angles are given by the author as [6, Equation (5.3)]. It is not the
intention to reconsider these fully here; instead we now move on to describe a method of
obtaining the solution for general (non-simple) beach angles.

5.3. The case of non-simple beach angles

Having derived a general solution of the functional equation in a form for which the solution
integral will only converge as a Cauchy principal value at infinity, it is convenient to make
some observations in order to recover an absolutely convergent integral. These observations
are readily seen from Equation (17) but are also established in Appendix C by use of the inte-
gral expression (11) and can be listed thus:

(i)
f (τ, γ )

cos π
2α (τ −γ ) = f (τ, γ )

cos π
2α (τ −γ )

(ii)
f (−τ, γ )

cos π
2α (τ −γ ) = f (τ, γ )

cos π
2α (τ +γ )

(iii)
f (−τ, γ )

cos π
2α (τ −γ ) = f (τ, γ )

cos π
2α (τ +γ )
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so that, in particular

f (τ, γ )−νf (τ, γ )
f (−τ, γ )−νf (−τ, γ ) ∼−1, τ = iy, y→±∞

provided that

ν= cos πγ2α

cos πγ2α

.

Since both f (τ, γ ) and f (τ, γ ) provide solutions, inverting the KLT as above allows construc-
tion of the further solution

φ=ς∞
∫
C

{
e−κR cos(τ+(θ+α))+ e−κR cos(τ−(θ+α))}ϒ(τ, γ ) dτ (21)

where

ϒ(τ, γ )= cos
πγ

2α
f (τ, γ )− cos

πγ

2α
f (τ, γ ),

ς∞ is a constant chosen to give unit amplitude at infinity and C is a contour in the r.h.
half plane asymptotic to the imaginary axis at both ends, cutting the real axis in the interval
π/2<Re(τ )<3π/2 and passing to the right of the points π/2± iσ (see Figure 2). Note that
this is now in the more usual Sommerfeld integral form but that the construction in terms of
ϒ(x, γ ) extends the absolute convergence of the integral uniformly to include the point R=0.
This is a deficiency in Lauwerier’s solution.

At this stage, rigorous verification of the solution is straightforward. Differentiation under
the integral sign is justified by dominated convergence and the only move requiring some

C

N
k

simple pole of f(      )

simple pole of f(      )

Nk

Strip of convergence of
solution integral.

Strip of analyticity of f of width   > 

Figure 2. Schematic representation of singularities and solution contour C in τ -plane (Equation (21)).
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further justification is in shifting the contours to satisfy the surface boundary condition.
Setting τ = c + iy, we are faced with one contour integral having the convergence factor
e−κR cosh y cos(c−α) and needing to be ‘dragged’ a distance 2α parallel to the real axis to match
its partner term. Thus, the requirement is simply tantamount to α≤π/2 where equality can be
tolerated by principal-value arguments as |τ |→∞. The present theory would therefore appear
to be invalid for the case of an overhanging cliff.

6. Computing the solution

It will be demonstrated below that the solution can be represented by a residue sum together
with an infinite integral which vanishes identically for simple beaches. It will also be dem-
onstrated (see 6.3, particularly 6.3.2, below) that if non-simple beaches are very shallow, this
residue sum can become very large and accurate final evaluation relies on cancellation of this
with almost equal and opposite large values from the numerical integration. In these cases,
that mode of computation is impractical and will be replaced by a more stable numerical
integration on an alternative contour which does not embrace all the poles. It turns out that
embracing just the two poles with greatest real part is useful because these two provide the
field at infinity.

Let

g(τ |R)= e−κR cos(τ+(θ+α))+ e−κR cos(τ−(θ+α));

then it is easy to show that

cosech(πσ/α)
∫ i∞

−i∞
g(τ |R)ϒ(τ, γ ) dτ

=2 sin

(
π2

2α

)∣∣∣cos
πγ

2α

∣∣∣2
∫ i∞

0
g(τ |R)f (τ, γ ) cos(πτ2α )

cos π
2α (τ +γ ) cos π

2α (τ −γ ) cos π
2α (τ +γ ) dτ

where k=π/2α, γ =π/2+ iσ , and coshσ =1/κ (the waves at infinity making an angle sin−1 κ

with the shore-line normal). Thus, using Equation (16), we can express a solution having unit
amplitude at infinity in the alternative form

φ=�res+2iς∞ sinh 2kσ sin kπ |cos kγ |2
∫ i∞

0

g(τ |R)f (τ, γ ) cos kτ
cos k(τ+γ ) cos k(τ−γ ) cos k(τ+γ ) dτ (22)

where �res denotes the appropriate sum of residues at the poles of ϒ with non-negative real
part in Re(τ )<π/2.

The significance of Equation (22) is the multiplier sin kπ which ensures that the ‘remain-
der’ term will vanish identically for the very simple beach angles when k is integer. We there-
fore have a general solution which automatically reduces to the finite sum already well-known
(e.g. [11]) for these angles.

In the non-simple cases the integral on [0, i∞] (which converges exponentially for all val-
ues of R) is added and in the case where poles fall on the imaginary axis, this integral is inter-
preted as a principal-value integral and only half the corresponding residues are taken.

6.1. Computing the residues

A glance at the numerators in Equation (17) shows that there are four groups of singulari-
ties (which are all simple poles if α is an irrational multiple of π ), two of the groups have no
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poles to the right of the line Re(τ )=π/2 −α, whilst the other two have none to the left of
the line Re(τ )=3π/2+α. Specifically, with (m,N)=0,1,2, . . . ,

1 : τ =α+γ + (2m+1)π +2Nα,

2 : τ =α−γ + (2m+2)π +2Nα,

3 : τ =−α−γ − (2m+1)π −2Nα,

4 : τ =−α+γ − (2m)π −2Nα,

defines the four sets j , j=1,2,3,4 where f (τ, γ ) has poles and, regardless of the arithmetic
nature of α, those in the region 0<Re(τ )<π/2 emanate from the ‘primary’ set when m= 0
and must therefore all be simple poles. This is an important observation since we want to
pass the solution integral contour only across that region. The poles of ϒ in the region arise
from the primary set of 4 and are at

τ =π/2−α± iσ, π/2−3α± iσ, π/2−5α± iσ, . . . , π/2−Nkα± iσ.

where Nk is the odd value of either [k] or [k−1].
By using the continuation formula Bk(s+ 1)=Bk(s) tan sα, we can write down the value

of the contribution due to the sum of all the relevant residues thus:

�res =2π i�ς∞
Nmax∑
N=0

λN {e−κR cos(γ+θ−2Nα)+ e−κR cos(γ−θ−2(N+1)α)}

×
N−1∏
j=0

cot(j −N)α
cot( γ

α
+ j −N)α + c.c. (23)

where

�= 2Bk(1)
Bk(

γ
α
)

cos
(
πγ

2α

)
, λN =1, N <Nmax; λNmax = 1

2

and Nmax =
[
k−1

2

]
and it is further understood both that the product of cotangents takes the

value unity when N = 0 and that c.c. means that γ is replaced by γ in the previous term.
Note that, writing �=�0eiδ the wave at infinity is given by

�(∞)
res =−4π�0ς∞ sin(T R+ δ)

where T = tanhσ , so inferring the choice ς∞ = 1
4π�0

to give a unit amplitude wave at infinity.
Note also that the introduction of λN validates the formula also for the case where there are
poles on the imaginary axis (these are the Ursell edge wave critical slope angles π/6, π/10, . . .
(see [1])). In two examples below (see Section 6.3) are computed the sum of residues for the
two cases (i) α = 1c and (ii) α = 0.1c with the respective corresponding values (i) Nmax = 0
and (ii) Nmax = 7. The computation of � now needs to be done using the integral expres-
sion (11) since k is irrational. However, the value of Bk(1) is obtained easily by combining
the ‘folding’ formula (13) with the difference relation (10) and taking the limit s→ 0. This
yields Bk(1)=√

α. In order to develop a unit amplitude at infinity, there is a need to com-
pute |Bk(1)/Bk(γ /α)|. By using the results of [24, Appendix 1], it can readily be shown that

Bk(1)
Bk(ρ)

= exp
∫ ∞

0

sinh(k−ρ)t sinh(ρ−1)t
t cosh kt sinh t

dt; 0<Re(ρ)<k+1. (24)
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With the help of [26, Art. 4.116(2)] it is possible to establish the closed-form result

|Bk(1)/Bk(γ /α)|= cosh kσ
(

tanh kσ
k tanhσ

)1/2

,

details of this are given in Appendix C. This enables the full solution to be rewritten

φ=�res − iλ
∫ i∞

0

g(x)f (x, γ ) cos kx
cos k(x+γ ) cos k(x−γ ) cos k(x+γ ) dx (25)

where

λ= sin(kπ) sinh kσ | cos kγ |
2π

(
k tanh 2σ
tanh 2kσ

) 1
2

.

6.2. Near-shore behaviour

An expression for the argument δ of � is given by

δ=arg�=arg cos kγ − 1
2

∫ ∞

0

sin
(

2σ t
α

)

t

(
tanh kt
tanh t

−1
)

dt. (26)

In the case of the very simple beach k=2, the integral remainder term vanishes identically
(as it will for all very simple beaches) and the expression for �res reduces to just one term of
the sum (since Nmax = 0) and is all that is required to produce the full solution. Neverthe-
less, it is not entirely straightforward to recover the classical result of shoreline wave amplifi-
cation by a factor of

√
2 in the limit of normally incident waves (σ→∞). The difficulty stems

from the need accurately to calculate ArgB2(γ /α)) as σ →∞. This is tantamount to examin-
ing ArgB2(iσ) in the same limit and the expression (12) cannot be used since it is restricted
to Re(s)>0. It is shown in [24], however, that, on s= c+ iτ

B(s)=√
2π exp

{
−1

2
π |τ |+ iπ

4
(2c− (k+1)) sgn τ

}{
1+O(e−π |τ |/k)

}; 0<c<1

It follows that Arg �→ π
4 (k+ 1)sgn τ . This means that, after inserting the time factor and

taking real parts, the two terms which contribute the asymptotic form as R→∞ amount to
�∞

res = −4π�0 sinωt cos(κR sinhσ + δ) where �=�0eiδ. Meanwhile, the value of �res at the
origin is given by �0

res = 8π�0 cos δ cosωt thus giving, as required, the amplification 2| cos δ|
in the limit of normal incidence.

In the next subsections are delivered results for some extreme cases i.e., both shallow and
steep beaches and both near normal and glancing incidence angles. In doing this, we will be
show that the ‘remainder’ integral is generally not small compared to the residue contribu-
tions and near-shore it is often of the same order of magnitude.

6.3. Residue contributions

6.3.1. Example 1
For a wave on the beach of angle one radian, incident at an angle for which σ = 1, i.e.,
approx. 40◦, it is found that �= 4·10756 − 1·56053i. The expression for wave height contrib-
uted by the residues is

ηres =�
{

eiκR sinhσ − cos(2α− iσ)
coshσ

e−κR sin(2α−iσ)
}

− c.c.
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Figure 3. Contribution to wave height from residue
sum; Case α=1, σ =1 (angle of incidence ≈40◦).
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Figure 4. Contribution to wave height from residue
sum; Case α = 0·1, σ = 1 (angle of incidence ≈ 40◦).
Note the inordinately large values near the shore line.

which, for the chosen parameters, reduces to

ηres =�{eiT R − (cos 2+ iT sin 2)e−R sin 2eiT R cos 2}− c.c. (27)

A graph of iηres is shown in Figure 3. This compares qualitatively as well as can be
expected with the dashed contour in [6, Figure 2a] which is for 41 degree incidence on a 45◦

beach.

6.3.2. Example 2
For a shallow beach we take α=0·1 and retain σ =1; there follows similarly �=−6·25382+
10·816i and an expression for wave height contributed by the residues is

ηres =�
7∑

N=0

{
sin(γ −2Nα)e−κR cos(γ−2Nα)− sin(γ −2(N +1)α)e−κR cos(γ−2(N+1)α)}

×�− c.c. (28)

where

�=
N−1∏
j=0

cot(j −N)α
cot( γ

α
+ j −N)α

A similar graph of iηres for this case is shown in Figure 4. This illustrates more clearly
the difficulties with using the residue method for very shallow beaches. When these shallow
beaches are of the ‘very simple’ type, the cotangents (in the product expression) have a sym-
metry which suppresses their overall product. When the beach slope is not of this type, this
cancellation does not happen with a consequence that very large values are encountered near
the origin. It is well-known, for example, that the shore-line magnification is no greater than
its normal incidence value

√
k which for the beach of angle 0·1 is just 3·96 and this can be

compared with the magnification of ηres which is 24·91. Evidently therefore the residue con-
tributions are (in general) in no sense an approximation to the solution and the expression
referred to earlier as ‘remainder integral’ will consequently be relatively large for small values
of R. The remarks above lead to the conclusion that an alternative procedure is required to
give robustness to the process and avoid this numerical instability for very gentle beach slopes.
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Figure 5. Modulus of integrand in Equation (30).

7. Computation of solution using an alternative contour

In order to avoid the difficulty of large cotangent products which occur for very shallow
beaches, it will be necessary more directly to compute the solution on the given inversion con-
tour. It is found advantageous, however, to include the contribution �0 of the first two resi-
dues at the poles τ =π/2 −α± iσ , as these not only determine the wave field at infinity but
also because the integrand will then be substantially better behaved on a contour passing to
the left of these two poles. Denote such a contour C* by τ =X+ iY where

X= (π/2−α)sech
(
Y

σ
cosh−1 k−1

k−2

)
, Y ∈ [−∞,∞].

The contour C* is then contained in the strip 0<Re(τ )<π/2−α and is symmetric w.r.t. the
real axis. It is also asymptotic to the imaginary axis and bisects the line joining the two poles
at τ =π/2−α, τ =π/2−3α. The full solution can then be written

φ=�0 +ς∞
∫
C∗

{
e−κR cos(τ+(θ+α))+ e−κR cos(τ−(θ+α))}ϒ(τ, γ ) dτ, (29)

where, with δ defined by Equation (26), �0 is given by

�0 =Re
{
ieiδ(e−κR cos(γ+θ)+ e−κR cos(γ−θ−2α))

}

By combining the integrals along the respective parts of the path in the upper and lower
half planes, we may readily simplify to the expression

φ=�0 +ς∞
(∫ ∞

0
(X′ + i)g(X+ iY |R)ϒ(X+ iY, γ ) dY + c.c.

)

where X′ denotes dX
dY . With the result in Appendix C3, this can be written in the alternative

form

φ=�0 +λ∗
∫ ∞

0
Re

(
(X′ + i)g(τ |R)

{
1

cos kγ cos k(τ −γ ) − 1
cos kγ cos k(τ −γ )

}

×G(τ, σ )
)

dY, (30)
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where

τ =X+ iY, (λ∗)2 = k(s2 tanh2 kσ + c2) tanh 2σ
16π2 tanh 2kσ

; (c, s)= (cos, sin)kπ/2

and

G(τ, σ )= exp
∫ ∞

0

1
t sinhαt

{
1− cosh tτ

coshπt/2
cosσ t

}
dt.

For illustration, the absolute value of the integrand in the outer integral is displayed (over
the semi-infinite strip Imτ > 0 through contours for the case α= π/25 when R= 0 and the
incidence angle is just one degree. This shows, in particular, the difficulty with the ‘residue
+ remainder integral’ method as beaches become more shallow. The intensity of the poles
increases as Reτ decreases and any path of integration contained near the imaginary axis is
inevitably going to have to climb to and descend from a large height.

An expression can also be written for the velocity field v. Recall that g is defined by
g(τ |R)= e−κR cos(τ+(θ+α))+ e−κR cos(τ−(θ+α)) so that an expression is readily obtained, viz.

v=∇�0 +ς∞
(∫ ∞

0
(X′ + i)∇g(X+ iY |R)ϒ(X+ iY, γ ) dY + c.c.

)
. (31)

It should be noted that, despite the extra exponentially increasing (with Y ) factor arising from
the grad operator in the integrand, the overall convergence is largely unaffected, given that
|∇g| will be of order eY−ικR coshY as Y →∞, where ι=min(sinα, cosα).

8. Results

8.1. Numerical procedure

The inner integral is first split into
∫ a

0 + ∫∞
a

, where a is suitably chosen so that the first
integral is non-oscillatory and is therefore easily computed, with the help of an appropri-
ate Taylor expansion, using QUADPACK routine dqag. The choice is governed by a =
min(π/2σ,π/2Y ). In the second integral, the term 1/t sinhαt is integrated separately by the
routine dqagi (for semi-infinite interval) but the remaining part is now oscillatory and increas-
ingly so as Y → ∞. To deal with this difficulty, we will use the W-transformation (see [27])
which requires the computation of a sequence of finite integrals between the zeros of the con-
trolling oscillatory factor. However, depending on whether Y > σ or Y < σ , this controlling
factor is either cosh τ t or cosσ t . This needs to be negotiated as does the related observation
that, when Y ≈ σ , part of this integrand is non-oscillatory and the W-algorithm would fail.
Thus, we need to exclude, from this treatment, a small interval of the outer integration range,
where instead the value of the inner integral is computed using dqag.

With regard to the outer integral, the routine dqagi (intended for infinite integrals) does
not behave well for incidence angles of 30 degrees or beyond when beach slopes are compar-
atively small. Attempts to cure this by strategic adjustment of parameters epsrel and epsabs
have not succeeded and it was therefore decided to let a truncation value for the routine be
determined by the asymptotics of the integrand. Beyond this truncation value, an asymptotic
term is used. Conventional arguments involving the residue theorem readily show that, pro-
vided |Re(τ )|<α (so that equation (C2) may be used), then asymtotically as Im(τ )→∞ we
have

G(τ, σ )∼ cos kτ exp

(
2 coshσeiX−Y

sinα

)
.
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Figure 6. Wave heights for varying incidence; beach
angle α=π/3; angle of incidence, full line: 1◦, broken
line 21◦, dashed line 41◦, dotted line 61◦.
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Figure 7. Wave heights for varying incidence; beach
angle α= π/4·2; angle of incidence, full line: 1◦, bro-
ken line 21◦, dashed line 41◦, dotted line 61◦.

By examining also the next term (provided α <π/3 this arises from poles at t = ±3i), it is
established that the relative error of neglecting this term is < 10−N provided that Y > Yc =
max(Y (1)c , Y

(2)
c ). Here Y

(1)
c = 1

2 log
(

10N cosh(3σ) sin(α)
cosh(σ ) sin(3α)

)
and Y

(2)
c is chosen so that X < α, i.e.,

Y
(2)
c =σ cosh−1 k−1

cosh−1 k−1
k−2

.

In order to establish the upper truncation value, the dominant asymptotics of the outer
integrand is written. Because X may be zero (for integration on imaginary axis undertaken
when k<2·3) it is necessary to keep some extra terms. It is found that

{
1

cos kγ cos k(τ −γ ) − 1
cos kγ cos k(τ −γ )

}
G(τ, σ )∼ sinh 2kσ

| cos kγ |2
(

1+ 2 coshσ expiX−Y

sinα

)
+ ε,

where

ε= e−2k(Y−iX)

(
sinh 2kσ
| cos kγ |2 + e−3ikγ

cos kγ
− e−3ikγ

cos kγ

)
,

the ε-term being needed when X=0 because then the imaginary parts of the other terms van-
ish identically. Thus it is seen that the convergence is an exponential order faster on the imag-
inary axis itself than on the curve chosen which only approaches the axis asymptotically.

Moreover, as R increases, the decay will quickly become dominated instead by that of
the term g(τ |R) and this speeds up computations considerably on the curve C. There,
when R > 0·0001, the choice used in the routine for the upper truncation value is Ymax =
min

(
σ + log 30

R
,20σ/ cosh−1

(
k−1
k−2

))
, whilst for integration on the imaginary axis (k<2·3), this

can be relaxed to Ymax =σ +min(log 30
R
,20/k).

8.2. Output

Examples are presented below where the full solution has been computed through numerical
integration on the appropriate contour. One objective of the present study is to provide access
to application by the non-specialist mathematician. A single f77 routine (prog3.f for poten-
tials) is thus made available to the reader on the site1

www/lgu.ac.uk/cismres/xtra/prog3.f.

1site address may change with time; search author at: www/londonmet.ac.uk
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Figure 8. Wave heights for varying incidence; beach
angle α=π/31·5; angle of incidence, full line: 1◦, bro-
ken line 21◦, dashed line 41◦, dotted line 61◦.
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Figure 9. Contours calculated by MATLAB from a
(R, θ) -grid: 100×10.
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Case: α=π/11.5; wave incidence angle=21ο

Figure 10. Velocity vectors computed from Equa-
tion (31).

(A similar file /prog4.f gives the velocity vectors) The user inputs the beach angle and the
desired wave-incidence angle and the wave-form output is written to file (see coding for
details). The polar angle may be varied from its null default value to allow also the poten-
tial to be computed in the interior of the flow. The choice of contour is automated in the
routine.

Here, three different beach angles are examined, namely π/3, π/4·2, and π/31·5 and four
different design incidence angles, 1◦,21◦,41◦ and 61◦, are taken on each of these. The inci-
dence angle 1◦ allows the comparison with the normal-incidence case. In particular, it allows
the verification of the shoreline amplification factor, which is

√
k in the 2-d case. The first

example α=π/3 is chosen as an incline which could be of considerable interest from the point
of view of coastal-defence structures but for which, nevertheless, there are no published com-
putations. The results (which have been verified against the unpublished work [7]) are shown
in Figure 6.

The second example is chosen as it allows direct comparison with similar work undertaken
by the author in [6] for beaches of very simple slope. The same diagram there depicts the sit-
uation for the beach α=π/4 (see Figure 2a therein) and it is noteworthy that, whereas for
this result the residue computation at R= 0 for example is

√
2, for the beach α=π/4·2 it is

over twice as much with the remainder integral establishing the correction to the value
√

2·1.
This discrepancy becomes more significant as beach angles diminish (as discussed earlier) and
could eventually lead to computational difficulties because of the inordinately large cancella-
tion required. Moreover, the accurate cancellation of this discrepancy by the contour integra-
tion must be seen as validation of the integration method. The wave profiles are shown in
Figure 7. The third example (Figure 8) is chosen because it is a relatively shallow beach. For
the first case, the remainder integral is taken along the imaginary axis, whilst, for the other
two, the alternative contour is used.
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Finally, to demonstrate the f77 routine, also presented for a random case chosen with α=
π/11·5 and angle of wave attack 21◦ are (i) isobars shown in Figure 9 and (ii) velocity vectors
shown in Figure 10.

9. Concluding remarks

This work has highlighted, for the 3-d plane-beach-scattering problem, a scarcity of computa-
tional techniques for evaluating potentials and/or velocities in all but the most simple of cases. A
new way of developing the basic solution for the bounded standing wave has been proved rigor-
ously and explored numerically to demonstrate that a robust method exists when the beach and
wave incidence angles are acute but otherwise totally arbitrary. When beach angles are steep
(here chosen arbitrarily by the condition k < 2·3), integration can be taken on the imaginary
axis, but for greater non-integer values of k (notably k >8) the contribution from the residues
becomes large and requires cancellation with the contribution from the integral along the imag-
inary axis. This is a classical case of numerical interference and is overcome by using instead
the alternative contour which requires only the residues from the two principal poles.

The validity of the procedure of computations relies on three essential tests: (i) that
the computed potentials are in agreement with those already known for simple beaches [6],
(ii) that the computed potentials are in agreement with those calculated by Bruce [7] for the
non-simple beach α=π/3, and (iii) that the shore-line amplification factor approaches the 2-d
value

√
k for all beach slopes as the incidence angle becomes small. The value of this last test

was emphasised by demonstrating that, for non-simple beaches, the residues do not contribute
most of this value and so, if the contour-integration technique was somehow unreliable, it
would be impossible to get the correct values at the shore line. Meanwhile, the numerical inte-
gration packages from the QUADPACK suite are well known to behave robustly, whilst the
application of the W-transform to integrals of the type considered here is known to induce
relative errors of order 10−12 when 10 or more iterations are used (see [27] or [28] for more
complete details and illustrative examples).

Whilst the singular (unbounded) standing wave has not been considered here, it is clear
that further work is required to establish also a robust computational technique for this wave.
This, of course, is required in a model that provides for progressing wave behaviour at infin-
ity (see e.g. [29] for the pioneering theory or [6] for computation of this wave on ‘simple’
beaches). It was hinted earlier in this work and discussed in [6] for simple beaches, that the
description of this wave could be achieved by replacing A(s) by A∗(s) cothπs, where A∗ is
of odd parity in Equation (5). The complication introduced by this replacement is first seen
in the equivalent to Equation (21) in which the pair of exponential functions in the inte-
grand would be replaced by a similar pair together with an infinite integral that would also
need computation before evaluating the outer integral. The reader is referred to [6] for more
details (in particular Equation (5.4) and Sections 7 and 8 therein). It remains to be seen, in
future work, whether this extra integration prohibits full computation in a reasonable time
and therefore whether other approximation techniques need to be explored (such as the near-
field expansion discussed in [6, Section 8] supported by a far-field asymptotic expansion). This
is considered beyond the scope of the present work.
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Appendix A. The solution of Lauwerier

The solution given in [5] needs to be more fully discussed since it is related to the way the
solution is presented here.

The expression, given as Equation (6.7) in Lauwerier’s work (L), is written here (for the
bounded wave only) in terms of parameters used in the present paper (note that L set κ= 1
effectively to non-dimensionalise). Thus, only for values on the surface,

φ=2i−
∫ ∞

−∞
e−iκR sinhu coshu cosh k

(
u− 1

2π i
)

coshu− coshσ

{
2(coshu− coshσ)

(cosh 2ku− cosh 2kσ)(coshu+ coshσ)

} 1
2

×ϕ(u) du, (A1)

where

ϕ(u)= exp
(

i
∫ ∞

0

sinut
t

cosσ t sinh(π/2−α)t
sinhαt coshπt/2

dt
)
.

Similarities are noted between ϕ and Maliuzhinets’s function Mβ(s) and, with the common
denominator enjoyed by the two integrands, one could express ϕ in terms of Mβ functions.
However, the presentation here will be restricted to demonstrating that the exact solution for
the unit-gradient beach can be recovered from L. Indeed, whilst L could be forgiven for not
pursuing a computation bearing in mind the limited computing power available half a century
ago, it is more difficult to accept that a simple analytic solution was not verified given that
Roseau [4] had long ago established one such.

Setting α=π/4 there follows readily

ϕ(u)= exp
{

i tan−1
(

sinhu
coshσ

)}

and using this, whilst making the transformation x= sinhu in the expression for φ, we achieve
a substantial simplification:

φ=2i−
∫ ∞

−∞
e−iκRx(ix+ coshσ)

(
1

x2 − sinh2 σ
+ 1

x2 + cosh2 σ

)
dx

The closed-form expression, given (for all depths) toward the end of Section 5.2, can now
be recovered in the usual way, by replacing the principal value (p.v.) integral by the (suitably
indented) contour integral and taking account of 2π i times the residue at x=−i coshσ and
π i times the residues at x = ± sinhσ . Meanwhile, the problem of a more general numerical
computation from the integral expression requires also replacing the p.v. integral by the field
at R=∞ (arising from the residues on the real axis) and an integral along a path in the lower
half-plane parallel to the real axis (Im(x)=−ρ). This could then be the procedure adopted
for non-simple beach slopes but there would be complications. In particular, the convergence
of the line integral developed from (A1) would not be uniform in any interval including the
shore line despite an interpretation of the type limX→∞

∫ X−iρ
−X−iρ . This would inevitably lead to

numerical difficulties in computing values near the shore line. Moreover, branch cuts of the
integrand require π/k>ρ>0, so choosing say, ρ=π/2k, we have that the exponential decay
of the integrand is only of the order e−κR coshu sinα . This compares poorly with the decay of
the integrand used in the model of the present paper which is of the order e−κR coshu cosα−νu

when the alternative contour is used and of the order e−κR coshu cosα−2ku when the integration
is on the imaginary axis (k < 2·3) Here ν = 1

σ
cosh−1 k−1

k−2 . A comparison of the convergence
properties of models is shown in Table 1 which x is the integration variable and ρ(R, x)=
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Table 1. Comparison with Lauwerier’s analysis.

Model Algebraic Exponential Oscillatory Convergence
Decay Decay exponent Wave Number

Lauwerier x−1 0 κR CPV/Conditional
Modified Lauwerier −κR sinα cosh x κR cosα sinh x Absolute if R>0
Present (shallow beach) −ρ(R, x)−νx κR sinα sinh x Absolute
Present (steep beach) −ρ(R, x)−2kx 0 Absolute

κR cosα cosh x. It is concluded that Lauwerier’s solution is inferior in several respects to the
present development.

In practical terms this means that the major difference between Lauwerier’s solution and
the present solution would seem to lie (i) in the computation of the integrals for small values
of R because of exponential decay and also for shallow beaches (ii) in the high O(R) oscilla-
tory component in Lauwerier, which is only O(αR) in the present model. Moreover, the expo-
nential decays are then respectively O(αR) and O(R) which also favours the present model.

Appendix B. Solution using Barnes’s double gamma function

Writing the difference equation (9) in the form

f (τ +α, γ )
f (τ −α, γ ) =− sin 1

2 (τ −γ ) sin 1
2 (τ − (π −γ ))

sin 1
2 (τ +γ ) sin 1

2 (τ + (π −γ ))
one can write the solution in the form

f (τ,γ )=C(τ)eiπτ/2α
G
{
α+2π+γ−τ

2α |π
α

}

G
{
α+2π−γ−τ

2α |π
α

}G
{
α+γ+τ

2α |π
α

}

G
{
α−γ+τ

2α |π
α

}G
{
α+3π−γ−τ

2α |π
α

}

G
{
α+π+γ−τ

2α |π
α

} G
{
α+π−γ+τ

2α |π
α

}

G
{
α−π+γ+τ

2α |π
α

} , (B1)

where G(z,�) is Barnes’s double gamma function (see [14]) and C(τ) is periodic of period 2α
but is otherwise arbitrary. The double gamma function satisfies two fundamentally important
difference relationships namely,

G{z+1|� }=(z/�)G{z|� } (B2)

and

G{z+� |� }= (2π) 1
2 (�−1)�

1
2 −z(z)G{z|� } (B3)

Thus by using (B3) on each of the last pair in the numerator of (B1) and writing, for
convenience,

�(τ)=C(τ)eiπτ/2α(2π)π/α−1(π/α)γ/α

(
1
2

+ π −γ − τ
2α

)


(
1
2

− π +γ − τ
2α

)
,

we obtain alternatively

f (τ, γ )=�(τ)
G
{
α+2π+γ−τ

2α |π
α

}

G
{
α+2π−γ−τ

2α |π
α

}G
{
α+γ+τ

2α |π
α

}

G
{
α−γ+τ

2α |π
α

}G
{
α+π−γ−τ

2α |π
α

}

G
{
α+π+γ−τ

2α |π
α

}G
{
α−π−γ+τ

2α |π
α

}

G
{
α−π+γ+τ

2α |π
α

} . (B4)
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The advantage with this representation is that the algebraic sum of the principal arguments
is now (2+π/α) in both the numerator and denominator of (B4).

One of the many expressions written by Barnes for the double gamma function is

G{z|� }= (2π�)z/2

�(z)
�(z−z2)/2� e−zC1(�)−z2D(�)/2

∞∏
m=1

{
(m�)

(z+m�)ezψ(m�)+z
2ψ ′(m�)/2

}
(B5)

where C1,D are specified functions of � and ψ is the usual digamma function with a dash
(there) denoting a derivative w.r.t its argument. When Equation (B5) is substituted in (B4),
all exponential terms linear in z cancel and the quadratic terms greatly simplify. Write, for
convenience

�(�)=−D(�)+
∞∑
m=1

ψ ′(m�)−�−1 log�,

so that G,� in (B4) may effectively be replaced by G∗,�∗ where

G∗{z|� }= 1
(z)

∞∏
m=1

{
(m�)

(z+m�)
}
,�∗ =�e4πγ�(�),

thus considerably reducing the complexity of the solution. After substituting the above and
simplifying, we obtain the final expression (17) given in the main text, noting that an arbi-
trary function of period 2α may always be multiplied on.

Appendix C. Some further technical details

C.1. the value of |�|
Setting ρ=γ /α=k+ iσ/α in Equation (24), we obtain

Bk(1)/Bk(γ /α)= exp

{
−i
∫ ∞

0

sin( σ t
α
) sinh(k−1+ iσ

α
)t

t cosh kt sinh t
dt

}

or

|Bk(1)/Bk(γ /α)|= exp
∫ ∞

0

cosh(k−1)t sin2 (σ t
α

)
t cosh kt sinh t

dt

= exp
∫ ∞

0

sin2 (σ t
α

)
t

(coth t− tanh kt) dt.

Take first the result
∫ ∞

0

sin2 (σ t
α

)
t

(coth t− tanh t) dt= log cosh
(
πσ/α

2

)
.

Now note that
∫ ∞

0

sin2 (σ t
α

)
t

(tanh t− tanh kt) dt=−1
2

log
{
k tanh(σ )
tanh(kσ )

}
.

Adding these two results, we obtain

|Bk(1)/Bk(γ /α)|= cosh kσ
(

tanh kσ
k tanhσ

)1/2

.
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C.2. derivation of certain relations satisfied by f (τ, γ )

We establish first the relation

f (τ, γ )

cos π
2α (τ −γ ) = f (τ, γ )

cos π
2α (τ −γ ) .

Using Equation (11) and Malmstén’s result

log(z)=
∫ ∞

0

{
e−zt − e−t

1− e−t + (z−1)e−t
}

dt
t

; Re(z)>0,

(see [23, p. 249]), we can obtain

logB(s)=
∫ ∞

0

e−t

t

(
est −1− ekt + e(k−s+1)t

(ekt +1)(1− e−t )
− 1

2

)
dt.

From this, an expression of the type occurring in Equation (16) is readily expressed in the
form

log
Bk(s1)

Bk(s2)
=
∫ ∞

0

e−t

t

{
cosh (2s1 −k−1) t− cosh (2s2 −k−1) t

(1− e−2t ) cosh kt

}
dt,

subject to s1, s2 being such that the integral converges. This then directly enables us to develop
the result

log
f (τ, γ )

f (τ, γ )
=−2i

∫ ∞

0

sin
(
σ t
α

)
sinh

(
τ−kα
α

)
t

t sinh t
dt=−2i tan−1

{
tan k

(
τ − π

2

)
tanh kσ

}

using of [26, Art. 4.114]. Redirecting the i through the tan−1 tanh operator and expressing
tanh−1 in terms of logarithms, provides the required result.

We next wish to show that

f (−τ, γ )
cos π

2α (τ −γ ) = f (τ, γ )

cos π
2α (τ +γ ) .

This is most readily observed through the convolution formula (13) which is valid on the strip
−k <Re(s)< 1 + k and is easily extended to other strips by use of the analytic continuation
formula (10).

Finally the last of the three results,

f (−τ, γ )
cos π

2α (τ −γ ) = f (τ, γ )

cos π
2α (τ +γ )

follows directly from the first two.

C.3. computing f (τ, γ ) on an alternative contour

The difficulties described in the text with carrying out computations for shallow beaches or
oblique incidence have been largely attributed to round-off-error problems. In this section we
revisit the calculation of f (τ, γ ) in the strip 0<Re(τ )<π/2 and in particular on the chosen
contour τ =X+ iY where X= (π/2−α)sech

(
Y
σ

cosh−1 k−1
k−2

)
. This contour is contained in the

strip 0<Re(τ )<π/2 −α is asymptotic to the imaginary axis and bisects the line joining the
residues at τ =π/2−α, τ =π/2−3α.

The previous development of f -values was for use on the imaginary τ -axis and was rel-
atively straightforward in terms of the Bk function and its subsequent integral expressions
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described herein. These were, however, limited in validity to strips of width 2α and so acces-
sibility to the entire strip 0<Re(τ )<π/2 would require repeated analytic continuation using
formula (10) with the consequence of varying amounts of cotangent products occurring in
different sub-strips. Such a development would be more akin to that achievable through
Peters’s [2] analysis, the numerical difficulties of which have already been discussed.

A fresh approach is therefore required and we take, as a starting point, instead the infi-
nite-product expansion (17) developed using Barnes’s double gamma function. We have

f (τ, γ )=�
∞∏
m=0


{
α−γ−τ+(2m+2)π

2α

}


{
α−γ−τ+(2m+3)π

2α

} 
{
α+γ−τ+(2m+3)π

2α

}


{
α+γ−τ+(2m+2)π

2α

} 
{
α+γ+τ+(2m+1)π

2α

}


{
α−γ+τ+(2m+1)π

2α

}

×

{
α−γ+τ+(2m+2)π

2α

}


{
α+γ+τ+(2m+2)π

2α

} ,

where, upon using (13), we have

�=

{
α−γ+τ

2α

}


{
α+γ+τ

2α

} 
{
α+γ−τ+π

2α

}


{
α−γ−τ+π

2α

} =
π

{
α+γ−τ+π

2α

}


{
α+γ+τ

2α

}

{
α+γ−τ

2α

}

{
α−γ−τ+π

2α

}
cos k(τ −γ )

,

thus ensuring that all arguments occurring in the gamma functions have non-negative real
part on 0 ≤Re(τ )≤π/2. This enables the further use of Malmstén’s result on the expression
for logf (τ, γ ). It is noted that the first quotient of gamma functions represented in � con-
tains the singularities in the strip and that the second quotient from the infinite product is
extracted simply to retain convergence of the Malmstén integral resulting from summation of
the logarithm of the remaining product. Doing this on the above, we produce the result

log�= log
π

cos k(τ −γ ) +
∫ ∞

0

1
t (1− e−t )

{
e−z1t − e−z2t − e−z3t − e−z4t +3e−t − e−2t} dt,

where

z1 = 1
2 + (γ − τ +π)/2α, z2 = 1

2 + (γ + τ)/2α
z3 = 1

2 + (γ − τ)/2α, z4 = 1
2 + (−γ − τ +π)/2α.

A similar treatment applied to the remaining infinite product yields

log
∞∏
m=0

(·)=
∫ ∞

0

dt
t (1− e−t )(1− e−2kt )

× (�+ −�−)

following summation. Here

�± = e−t (2π−τ∓γ )+ e−t (3π−τ±γ )+ e−t (2π+τ∓γ )+ e−t (π+τ±γ ).

Recombining the two expressions to form f (τ, γ ), we achieve a considerable simplification
and obtain

f (τ, γ )= 1
cos k(τ −γ ) exp

∫ ∞

0

dt
t sinhαt

{
1− cosh tτ

coshπt/2
cosσ t

}
, (C1)

a result which is valid in the extended strip −k−1<Reτ <k+1, thus obviating the need for
any recurrent use of formula (10). Note also, as a check, that setting τ =π/2, after some ele-
mentary manipulation we recover the result f (π/2, γ )=1.
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A somewhat more numerically stable formula, albeit one that is only valid in −α<Reτ <α,
is similarly

f (τ, γ )= cos kτ
cos k(τ −γ ) exp

∫ ∞

0

cosh τ t
t sinhαt

{
1− cosσ t

coshπt/2

}
dt (C2)

with the advantage of the integral decaying as τ → i∞ at least like |τ |−2 by the Riemann-
Lebesgue lemma. This formula may be used on the line τ = iy if y>σ . If, on the other hand,
y <σ , we use the alternative formula

f (τ, γ )= cosh kσ
cos k(τ −γ ) exp

∫ ∞

0

cosσ t
t sinhαt

{
1− cosh τ t

coshπt/2

}
dt. (C3)
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